
Chapter 5

Sets

A set contains a number of values, in no particular order. The values within
the set are distinct from one another.

Generally set implementations tend to check that a value is not in the set
before adding it, avoiding the issue of repeated values from ever occurring.

This section does not cover set theory in depth; rather it demonstrates briefly
the ways in which the values of sets can be defined, and common operations that
may be performed upon them.

The notation A = {4, 7, 9, 12, 0} defines a set A whose values are listed within
the curly braces.

Given the set A defined previously we can say that 4 is a member of A
denoted by 4 ∈ A, and that 99 is not a member of A denoted by 99 /∈ A.

Often defining a set by manually stating its members is tiresome, and more
importantly the set may contain a large number of values. A more concise way
of defining a set and its members is by providing a series of properties that the
values of the set must satisfy. For example, from the definition A = {x|x >
0, x % 2 = 0} the set A contains only positive integers that are even. x is an
alias to the current value we are inspecting and to the right hand side of | are
the properties that x must satisfy to be in the set A. In this example, x must
be > 0, and the remainder of the arithmetic expression x/2 must be 0. You will
be able to note from the previous definition of the set A that the set can contain
an infinite number of values, and that the values of the set A will be all even
integers that are a member of the natural numbers set N, where N = {1, 2, 3, ...}.

Finally in this brief introduction to sets we will cover set intersection and
union, both of which are very common operations (amongst many others) per-
formed on sets. The union set can be defined as follows A ∪ B = {x | x ∈
A or x ∈ B}, and intersection A ∩ B = {x | x ∈ A and x ∈ B}. Figure 5.1
demonstrates set intersection and union graphically.

Given the set definitions A = {1, 2, 3}, and B = {6, 2, 9} the union of the two
sets is A∪B = {1, 2, 3, 6, 9}, and the intersection of the two sets is A∩B = {2}.

Both set union and intersection are sometimes provided within the frame-
work associated with mainstream languages. This is the case in .NET 3.51

where such algorithms exist as extension methods defined in the type Sys-
tem.Linq.Enumerable2, as a result DSA does not provide implementations of

1http://www.microsoft.com/NET/
2http://msdn.microsoft.com/en-us/library/system.linq.enumerable_members.aspx

44



CHAPTER 5. SETS 45

Figure 5.1: a) A ∩B; b) A ∪B

these algorithms. Most of the algorithms defined in System.Linq.Enumerable
deal mainly with sequences rather than sets exclusively.

Set union can be implemented as a simple traversal of both sets adding each
item of the two sets to a new union set.

1) algorithm Union(set1, set2)
2) Pre: set1, and set2 6= ∅
3) union is a set
3) Post: A union of set1, and set2 has been created
4) foreach item in set1
5) union.Add(item)
6) end foreach
7) foreach item in set2
8) union.Add(item)
9) end foreach
10) return union
11) end Union

The run time of our Union algorithm is O(m + n) where m is the number
of items in the first set and n is the number of items in the second set. This
runtime applies only to sets that exhibit O(1) insertions.

Set intersection is also trivial to implement. The only major thing worth
pointing out about our algorithm is that we traverse the set containing the
fewest items. We can do this because if we have exhausted all the items in the
smaller of the two sets then there are no more items that are members of both
sets, thus we have no more items to add to the intersection set.



CHAPTER 5. SETS 46

1) algorithm Intersection(set1, set2)
2) Pre: set1, and set2 6= ∅
3) intersection, and smallerSet are sets
3) Post: An intersection of set1, and set2 has been created
4) if set1.Count < set2.Count
5) smallerSet ← set1
6) else
7) smallerSet ← set2
8) end if
9) foreach item in smallerSet
10) if set1.Contains(item) and set2.Contains(item)
11) intersection.Add(item)
12) end if
13) end foreach
14) return intersection
15) end Intersection

The run time of our Intersection algorithm is O(n) where n is the number
of items in the smaller of the two sets. Just like our Union algorithm a linear
runtime can only be attained when operating on a set with O(1) insertion.

5.1 Unordered

Sets in the general sense do not enforce the explicit ordering of their mem-
bers. For example the members of B = {6, 2, 9} conform to no ordering scheme
because it is not required.

Most libraries provide implementations of unordered sets and so DSA does
not; we simply mention it here to disambiguate between an unordered set and
ordered set.

We will only look at insertion for an unordered set and cover briefly why a
hash table is an efficient data structure to use for its implementation.

5.1.1 Insertion

An unordered set can be efficiently implemented using a hash table as its backing
data structure. As mentioned previously we only add an item to a set if that
item is not already in the set, so the backing data structure we use must have
a quick look up and insertion run time complexity.

A hash map generally provides the following:

1. O(1) for insertion

2. approaching O(1) for look up

The above depends on how good the hashing algorithm of the hash table
is, but most hash tables employ incredibly efficient general purpose hashing
algorithms and so the run time complexities for the hash table in your library
of choice should be very similar in terms of efficiency.



CHAPTER 5. SETS 47

5.2 Ordered

An ordered set is similar to an unordered set in the sense that its members are
distinct, but an ordered set enforces some predefined comparison on each of its
members to produce a set whose members are ordered appropriately.

In DSA 0.5 and earlier we used a binary search tree (defined in §3) as the
internal backing data structure for our ordered set. From versions 0.6 onwards
we replaced the binary search tree with an AVL tree primarily because AVL is
balanced.

The ordered set has its order realised by performing an inorder traversal
upon its backing tree data structure which yields the correct ordered sequence
of set members.

Because an ordered set in DSA is simply a wrapper for an AVL tree that
additionally ensures that the tree contains unique items you should read §7 to
learn more about the run time complexities associated with its operations.

5.3 Summary

Sets provide a way of having a collection of unique objects, either ordered or
unordered.

When implementing a set (either ordered or unordered) it is key to select
the correct backing data structure. As we discussed in §5.1.1 because we check
first if the item is already contained within the set before adding it we need
this check to be as quick as possible. For unordered sets we can rely on the use
of a hash table and use the key of an item to determine whether or not it is
already contained within the set. Using a hash table this check results in a near
constant run time complexity. Ordered sets cost a little more for this check,
however the logarithmic growth that we incur by using a binary search tree as
its backing data structure is acceptable.

Another key property of sets implemented using the approach we describe is
that both have favourably fast look-up times. Just like the check before inser-
tion, for a hash table this run time complexity should be near constant. Ordered
sets as described in 3 perform a binary chop at each stage when searching for
the existence of an item yielding a logarithmic run time.

We can use sets to facilitate many algorithms that would otherwise be a little
less clear in their implementation. For example in §11.4 we use an unordered
set to assist in the construction of an algorithm that determines the number of
repeated words within a string.


